CERN openlab Major Review Meeting

18th September 2008

FRN

Networking by HP

openlab

ProCurve

Milosz Marian Hulboj - CERN/Procurve

Ryszard Erazm Jurga - CERN/Procurve

Agenda

Network Anomalies

- Definition and detection methods
- Scalable sFlow Collector
 - Implementation
 - Wide scale data collection
- First achievements
- Conclusions and Future Plans

Anomaly Definition (1)

- Anomalies are a fact in computer networks
- Anomaly definition is very domain specific:

Network faults	Malicious attacks	Viruses/worms
Misconfiguration		

- But there is a common denominator:
 - "Anomaly is a deviation of the system from the normal (expected) behaviour (baseline)"
 - "Normal behaviour (baseline) is not stationary and is not always easy to define"
 - "Anomalies are not necessarily easy to detect"

Anomaly Definition (2)

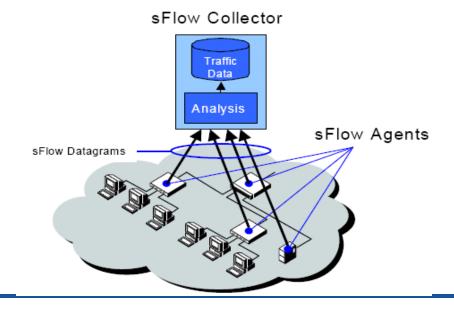
Just a few examples of anomalies:

- Unauthorised DHCP server (either malicious or accidental)
- NAT (not allowed at CERN)
- Spreading worms/viruses
- Exploits (attacker trying to exploit vulnerabilities)
- Examples of potential anomaly indicators:
 - TCP SYN packets without corresponding ACK
 - IP fan-out and fan-in (what about servers i.e. DNS?)
 - Unwanted protocols on a given subnet (packets 'that should not be there')

Signature Based Detection Methods

- Perform well against known problems
- Can provide detailed information about the anomaly
- Tend to have low false positive rate
- Do not work against unknown anomalies
- Require up-to-date database of known signatures
- Numerous practical applications: antivirus software, IDS software
- Example: Signature found at W32.Netsky.p binary

00000760	E7	6F	8C	88	ЗA	79	B3	9D	9D	52	44	AD	62	61	3D	8F	Ç
00000770	<u>98</u>	6D	4C	07	C2	00	E5	4C	48	F0	91	4E	EΒ	87	89	77	1
00000780	7E	E0	83	B1	94	94	CC	E9	F5	97	97_	53	95	5C	95	AF	~3
00000790	C6	40	C5	CA	AC	25	8E	47	F1	5D	0B	9F	BB	CB	Ά6	67	Æ
000007A0	DB	44	E8	D2	$\overline{48}$	3B	8F	76	CB	9E	$\mathbf{E1}$	53	FB	\mathbf{FB}	41	11	ÛI

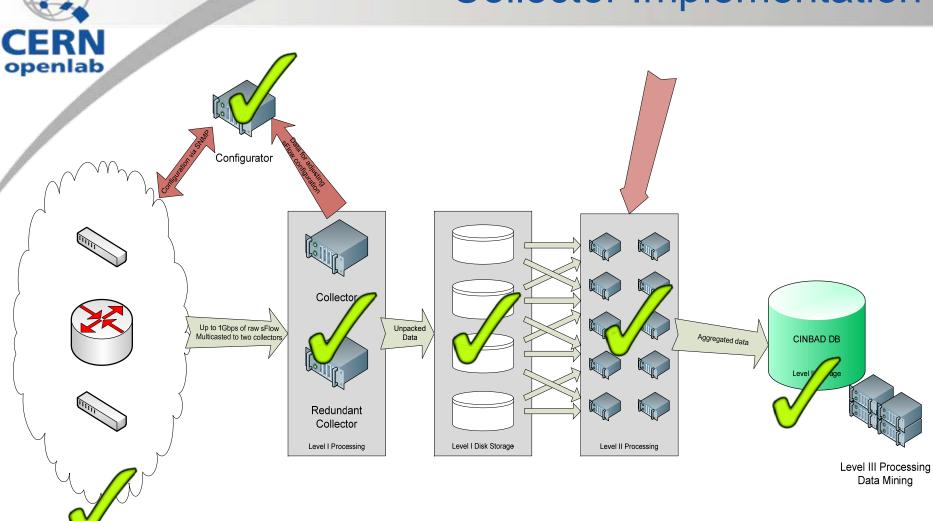

Statistical Detection Methods

- Learn the "normal behaviour" from network measurements
- Can continuously update the "normal baseline"
- Can detect new, unknown anomalies
- Selection of suitable input variables is needed
 - Many anomalies are within "normal" bounds for most of the metrics
- May be subject to attack
 - Attempt to force false negatives to occur i.e. "boil the frog"
- Detection Rate vs False Positive Ration tradeoff
 - False positives are very costly
- Poor anomaly type identification
 - Is it a flash crowd or DDoS attack?
 - Very important issue for the real life usage

CERN openlab

Main Datasource - sFlow

- Multi-vendor standard for passive network monitoring
- Complete packet header information
- Some SNMP counters information
- Raw sFlow data is not suitable for most types of analysis
- Conversion to a form suitable for analysis is needed



sFlow Data Collector Design

- Huge amount of raw sFlow data
 - Estimated amount: 300'000 samples/second
- Survey on data acquisition @ CERN:
 - Oracle users: Lemon, PVSS
 - LHC experiments experts consulted:
 - High performance data storage
 - Data format and representation
 - Analysis principles
- Conclusion: follow a two level strategy

Collector Implementation

Layer I Storage

- sFlow datagram tree-like format is not ideal
- Our main wishes:
 - Fast direct access to all sample elements
 - Have all the needed data in one place
 - Avoid multiple parsing of the sFlow tree
- Thus we have decided to flatten the sFlow information:
 - Raw headers stored in pcap compatible format
 - Metadata stored in separate file
 - Minimal space overhead introduced

Special tools developed for filtering the data. Already found some interesting results! Nataly Basha (openlab summer student) contribution

Layer II Storage

- Oracle as a long-term storage
- What should be stored:
 - We want to store the data for a long time
 - We want to store as much useful information as possible
- Currently we are storing some basic data aggregates (flow information):
 - At the L2 level (Ethernet, LLC)
 - At the L3 level (IP)
 - At the L4 level for certain protocols (TCP, UDP, ICMP)

- CINBAD sFlow data collector worked well
 - run on the Intel Dual Quad-Core server with 16GB RAM and 2TB storage
- Data collected:
 - Day1: 186 devices, over 20GB data
 - Day2: 438 devices, over 70GB data
 - Additionally received sFlow data from ATLAS experiment (over 1.5TB)
- The system has been running as expected
- Minor issues with old firmware versions

First achievements

- Detected "anomalies"
 - strange device (Ethernet-to-serial hub sending any broadcasts)
 - external DNS users and strange traffic on port 53

And all that just within this "small" amount of data we have from the two days testing!

- Ine security team activities in the network
- Triggered actions
 - security team decided to block the traffic to outside DNS servers
 - A policy regarding TOR and proxies usage at CERN will be prepared

Conclusions

- We have implemented working system for on-line collection and processing of the sFlow data
- We obtained encouraging initial results of data analysis
- We continue to collaborate with many parties at CERN:
 - IT-CS group
 - CERN security team
 - ATLAS Network Team

Future Plans

- Investigate anomalies related to DHCP and NAT
- How much did we miss because of the our data aggregation?
- Automate the detection process for identified types of anomalies
- Look for more anomalies
 - extend our current set of data aggregates
 - try to use machine learning methods automate the process